2014-09-22
2016-05-09
2016-05-09
100
NCT02310230
University of Vermont
University of Vermont
INTERVENTIONAL
An Evaluation of the Utility of the ExSpiron Respiratory Variation Monitor During Upper GI Endoscopy
Purpose: To assess the utility of a new medical device that monitors a patient's breathing during medical procedures in which a patient is sedated, but not mechanically ventilated. In minor procedures, such as endoscopy (where the doctor examines a patient's digestive tract by a TV camera inserted through the mouth), patients do not require general anesthesia, in which a machine would take over their breathing while they are unconscious for surgery. However, during endoscopic procedures it is sometimes difficult for the anesthesiologist to monitor the patient's breathing-specifically, to monitor changes in breathing patterns and the adequacy of breathing. In endoscopy procedures, the room is darkened, and the patient's mouth is generally occupied by the endoscope. While the anesthesiologist can listen to the patient's breathing sounds with a stethoscope, this type of monitoring can only be done periodically, and there is limited ability to gauge the adequacy of ventilation. This study will use the ExSpiron Respiratory Volume Monitor (RVM), which measures non-invasive minute ventilation (MV), tidal volume (TV) and respiratory rate (RR), in patients undergoing an endoscopic procedure to provide additional information regarding the effects of clinical interventions such as drug administrations or airway maneuvers on the patient's respiratory status. For patients who give informed consent, study participation means that they will have a PadSet consisting of 3 electrodes applied to the chest. Another component, a nasal cannula (a thin clear plastic tube that goes under the nose) will give patients supplemental oxygen, and is standard of care for endoscopy at UVM Medical Center. Patients will then be asked to breathe in and out of a portable spirometer (breath meter) for 30 seconds up to five times. This data will be compared to data recorded by the monitor to confirm that the monitor is recording accurately. The procedure will then go forward in the normal fashion. Patients will be randomly placed into one of two groups. In the first group during the procedure, the anesthesiologist will not be able to see the numbers (MV, TV, and RR) displayed screen of the monitor, so the data will not be used to guide the patient's clinical care. In the second group, the anesthesiologist will be able to see the RVM measurements of MV, TV, and RR to evaluate the effect of the interventions. Monitoring for both groups will continue in the recovery room, until discharge.
The purpose of this study is to assess the utility of the ExSpiron Respiratory Variation Monitor in patients undergoing an interventional procedure with anesthesia. The primary outcome measure will be the average minute ventilation of the patient during the procedure. This study will also examine the correlation between clinical interventions such as drug administrations or airway maneuvers with data from the monitor. Additionally the study may provide information about the ability of this new monitoring system to prevent hypoxemia during these procedures and to consider its utility, compared with capnography, to detect hypopnea. Background Assessing the adequacy of ventilation during Monitored Anesthesia Care (MAC) and sedation is difficult. Agents used to provide procedural sedation can depress ventilatory drive and can interfere with airway patency, making it much more likely that the patient will hypoventilate and experience partial or complete obstruction to ventilation. [It is actually clinically easier to administer general anesthesia and insert an airway management device such as an endotracheal tube or a laryngeal mask airway , however given the superior recovery profile following sedation vs. general anesthesia, it is usually preferable to administer sedation, if the procedure can be performed with its use.] The American Society of Anesthesiologists maintains a database of closed malpractice claims which allows analysis of patterns of injury. A study considering claims from MAC/sedation cases found that 40% of the MAC claims resulted in death or brain damage, that 25% of the claims that were associated with oversedation/hypoventilation occurred in the endoscopy suite, and that 44% of the oversedation cases could have been prevented by better monitoring.1 A study comparing claims from remote locations (such as endoscopy) with operating rooms, found that 50% of remote location claims involving monitored anesthesia care, the proportion of claims for death was increased in remote location claims [54 vs. 29% (operating room claims)], respiratory damaging events were more common in remote location claims (44 vs. 20%), with inadequate oxygenation/ventilation the most common specific event (21 vs. 3% in operating room claims), and that remote location claims were more often judged as being preventable by better monitoring (32 vs. 8% for operating room claims).2 Upper endoscopy procedures, such as upper GI endoscopy and endoscopic retrograde cholangiopancreatography (ERCP), are particularly challenging where the anesthesiologist has limited access to the patient's head and is working in darkened rooms. Indeed investigators have found it very difficult to find a combination of propofol and short acting opioid that allows instrumentation of the esophagus without "intolerable ventilatory depression".3 Trying to assess ventilation by observing chest excursion or listening to ventilation with a stethoscope under these conditions can be difficult and can be done only periodically. Side-stream nasal cannula end-tidal capnography offers a possible solution, but the cannula can become dislodged and the proceduralist's endoscope often interferes with its function. End-tidal capnography in the non-intubated patient is very insensitive to changes in minute ventilation. At best, this technology can usually assess only the presence or absence of ventilation: there is limited ability to judge the adequacy of ventilation or to quantify it.4 The Study Device The ExSpiron Respiratory Volume Monitor (Respiratory Motion, Inc., Waltham MA) has FDA 501(k) clearance to be used for patient care. It consists of a proprietary PadSet that is placed on the chest in the mid-axillary line and connected to a free standing monitor. This monitor measures and analyzes the changes in thoracic electrical impedance that occur during the respiratory duty cycle. It is able to quantify respiratory rate and also determine tidal volume and minute ventilation as well as graphically display changes in lung volumes. It has been shown to accurately measure the effect of interventions (medications, airway maneuvers) in endoscopy patients.5 Preliminary work has determined optimal lead placement demonstrated excellent correlation to spirometry with an R value of 0.94-0.98 and excellent accuracy and precision.6 Preliminary work cited below has shown that the monitor provides information about the effect of medications and airway maneuvers on breathing patterns that is not available with routine monitoring. This study seeks to extend that knowledge by investigating whether using this information in real-time results in different respiratory measurements compared to patients with routine monitoring.
These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.
Study Registration Dates | Results Reporting Dates | Study Record Updates |
---|---|---|
2014-09-18 | 2017-06-29 | 2024-05-30 |
2014-12-03 | 2024-05-30 | 2024-06-25 |
2014-12-08 | 2024-06-25 | 2024-05 |
This section provides details of the study plan, including how the study is designed and what the study is measuring.
Primary Purpose:
Diagnostic
Allocation:
Randomized
Interventional Model:
Parallel
Masking:
Single
Arms and Interventions
Participant Group/Arm | Intervention/Treatment |
---|---|
OTHER: Blinded Group Data from the ExSpiron Respiratory Variation Monitor (minute ventilation, tidal volume, and respiratory rate) will not be displayed. The anesthesia provider will care for the patient in the usual manner. | DEVICE: ExSpiron Respiratory Variation Monitor
|
EXPERIMENTAL: Monitor Group The ExSpiron Respiratory Variation Monitor will display continuous real-time measurements of minute ventilation, tidal volume, and respiratory rate, and the anesthesia provider will be instructed to utilize this information in the care of the patient as t | DEVICE: ExSpiron Respiratory Variation Monitor
|
Primary Outcome Measures | Measure Description | Time Frame |
---|---|---|
Average Minute Ventilation in Patients Cared for Using the ExSpiron Respiratory Variation Monitor (RVM) Compared to Patients With Routine Monitoring in Patients Undergoing Upper Gastrointestinal Endoscopy | Minute ventilation (or respiratory minute volume) is defined as the volume of air that can be inhaled or exhaled during one minute. The ExSpiron Respiratory Variation Monitor is able to quantify respiratory rate and also determine tidal volume and minute ventilation. The monitor measures a patient's baseline minute ventilation (MV) at the beginning of the case, and then compares subsequent minute volumes to that baseline, measured as a percentage of the baseline. In that respect, the minute ventilation (MV) values can often exceed 100 percent. | Duration of procedure: Approximately 60 minutes |
Secondary Outcome Measures | Measure Description | Time Frame |
---|---|---|
Incidence of Airway Maneuvers Required to Maintain Ventilation in Each Group | Duration of procedure: Approximately 60 minutes | |
Time With Low Minute Ventilation | Percentage of procedure time spent with Minute Ventilation less than 40% of the Minute Ventilation Baseline. Minute ventilation (or respiratory minute volume) is defined as the volume of air that can be inhaled or exhaled during one minute. The ExSpiron Respiratory Variation Monitor is able to quantify respiratory rate and also determine tidal volume and minute ventilation. | Duration of Procedure: Approximately 60 Minutes |
This section provides the contact details for those conducting the study, and information on where this study is being conducted.
Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person’s general health condition or prior treatments.
Ages Eligible for Study:
ALL
Sexes Eligible for Study:
21 Years
Accepts Healthy Volunteers:
This is where you will find people and organizations involved with this study.
The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.
General Publications
NPCF was founded on May 29, 2009 and is a 501(c)(3) organization. All donations are tax deductible.
The information and services provided by the National Pancreatic Cancer Foundation are for informational purposes only. The information and services are not intended to be substitutes for professional medical advice, diagnosis or treatment. The National Pancreatic Cancer Foundation does not recommend nor endorse any specific physicians, products or treatments even though they may be mentioned on this site.